Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular docking to explore the possible binding mode of potential inhibitors of thioredoxin glutathione reductase.

Identifieur interne : 000532 ( Main/Exploration ); précédent : 000531; suivant : 000533

Molecular docking to explore the possible binding mode of potential inhibitors of thioredoxin glutathione reductase.

Auteurs : Jingwei Huang [République populaire de Chine] ; Weijuan Hua [République populaire de Chine] ; Jiahuang Li [République populaire de Chine] ; Zichun Hua [République populaire de Chine]

Source :

RBID : pubmed:26239395

Descripteurs français

English descriptors

Abstract

Praziquantel (PZQ) is the treatment of choice for schistosomiasis, one of the most important but neglected tropical diseases. Recently, however, Schistosoma have exhibited reduced susceptibility to PZQ, and an urgent need to develop new drugs to treat schistosomiasis has emerged. Thioredoxin glutathione reductase (TGR) plays a crucial role in the redox balance of the parasite, combining glutaredoxin (Grx), glutathione reductase and thioredoxin reductase (TR) activities. Several compounds, including oxadiazole 2‑oxides, phosphinic acid amides, isoxazolones and phosphoramidites, have been identified as agents that inhibit TGR from Schistosoma mansoni (smTGR) and exhibit anti‑schistosomal activity. 4‑Phenyl‑1,2,5‑oxadiazole‑3‑carbonitrile‑2‑oxide has also been shown to be active against TGR from Schistosoma japonicum (sjTGR). The binding sites of these inhibitors, however, remain unclear. To explore the binding interactions of these compounds, we selected six compounds to dock into the NADPH binding site, the active site of the TR domain and the Grx active site of both smTGR and sjTGR using AutoDock 4.2.5.1. The results suggested that the most favoured binding site for all compounds in either sjTGR or smTGR was the oxidised glutathione‑binding pocket of the TR domain. Although all of the compounds could fit into the sjTGR site, the inhibition efficiency of these compounds towards sjTGR was marginally lower than it was towards smTGR, suggesting that it would be necessary to design specific inhibitors of TGR for different Schistosoma species. The docking results showed that all compounds docking in smTGR and sjTGR adopted similar binding modes in the TR domain. Two peptide fragments from another subunit, Phe505'‑Leu508' and Pro572'‑Thr577', played a critical role in the interactions with the inhibitors. In conclusion, the present study has revealed binding mechanisms for potential inhibitors of Schistosoma TGRs and could lead to structure‑based ligand design and the development of new anti-schistosomiasis drugs.

DOI: 10.3892/mmr.2015.4119
PubMed: 26239395
PubMed Central: PMC4581810


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular docking to explore the possible binding mode of potential inhibitors of thioredoxin glutathione reductase.</title>
<author>
<name sortKey="Huang, Jingwei" sort="Huang, Jingwei" uniqKey="Huang J" first="Jingwei" last="Huang">Jingwei Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093</wicri:regionArea>
<wicri:noRegion>Jiangsu 210093</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hua, Weijuan" sort="Hua, Weijuan" uniqKey="Hua W" first="Weijuan" last="Hua">Weijuan Hua</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Jiangsu Second Normal University, Nanjing, Jiangsu 210013, P.R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Department of Biology, Jiangsu Second Normal University, Nanjing, Jiangsu 210013</wicri:regionArea>
<wicri:noRegion>Jiangsu 210013</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Jiahuang" sort="Li, Jiahuang" uniqKey="Li J" first="Jiahuang" last="Li">Jiahuang Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093</wicri:regionArea>
<wicri:noRegion>Jiangsu 210093</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hua, Zichun" sort="Hua, Zichun" uniqKey="Hua Z" first="Zichun" last="Hua">Zichun Hua</name>
<affiliation wicri:level="1">
<nlm:affiliation>The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093</wicri:regionArea>
<wicri:noRegion>Jiangsu 210093</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26239395</idno>
<idno type="pmid">26239395</idno>
<idno type="doi">10.3892/mmr.2015.4119</idno>
<idno type="pmc">PMC4581810</idno>
<idno type="wicri:Area/Main/Corpus">000509</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000509</idno>
<idno type="wicri:Area/Main/Curation">000509</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000509</idno>
<idno type="wicri:Area/Main/Exploration">000509</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Molecular docking to explore the possible binding mode of potential inhibitors of thioredoxin glutathione reductase.</title>
<author>
<name sortKey="Huang, Jingwei" sort="Huang, Jingwei" uniqKey="Huang J" first="Jingwei" last="Huang">Jingwei Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093</wicri:regionArea>
<wicri:noRegion>Jiangsu 210093</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hua, Weijuan" sort="Hua, Weijuan" uniqKey="Hua W" first="Weijuan" last="Hua">Weijuan Hua</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, Jiangsu Second Normal University, Nanjing, Jiangsu 210013, P.R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Department of Biology, Jiangsu Second Normal University, Nanjing, Jiangsu 210013</wicri:regionArea>
<wicri:noRegion>Jiangsu 210013</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Jiahuang" sort="Li, Jiahuang" uniqKey="Li J" first="Jiahuang" last="Li">Jiahuang Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093</wicri:regionArea>
<wicri:noRegion>Jiangsu 210093</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hua, Zichun" sort="Hua, Zichun" uniqKey="Hua Z" first="Zichun" last="Hua">Zichun Hua</name>
<affiliation wicri:level="1">
<nlm:affiliation>The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093</wicri:regionArea>
<wicri:noRegion>Jiangsu 210093</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular medicine reports</title>
<idno type="eISSN">1791-3004</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Anthelmintics (chemistry)</term>
<term>Binding Sites (MeSH)</term>
<term>Enzyme Inhibitors (MeSH)</term>
<term>Glutathione Disulfide (MeSH)</term>
<term>Helminth Proteins (antagonists & inhibitors)</term>
<term>Helminth Proteins (chemistry)</term>
<term>Isoxazoles (chemistry)</term>
<term>Molecular Docking Simulation (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Multienzyme Complexes (antagonists & inhibitors)</term>
<term>Multienzyme Complexes (chemistry)</term>
<term>NADH, NADPH Oxidoreductases (antagonists & inhibitors)</term>
<term>NADH, NADPH Oxidoreductases (chemistry)</term>
<term>NADP (chemistry)</term>
<term>Oxadiazoles (chemistry)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Interaction Domains and Motifs (MeSH)</term>
<term>Protein Structure, Secondary (MeSH)</term>
<term>Schistosoma japonicum (chemistry)</term>
<term>Schistosoma japonicum (enzymology)</term>
<term>Schistosoma mansoni (chemistry)</term>
<term>Schistosoma mansoni (enzymology)</term>
<term>Species Specificity (MeSH)</term>
<term>Structural Homology, Protein (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Anthelminthiques (composition chimique)</term>
<term>Antienzymes (MeSH)</term>
<term>Complexes multienzymatiques (antagonistes et inhibiteurs)</term>
<term>Complexes multienzymatiques (composition chimique)</term>
<term>Disulfure de glutathion (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Isoxazoles (composition chimique)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Motifs et domaines d'intéraction protéique (MeSH)</term>
<term>NADH, NADPH oxidoreductases (antagonistes et inhibiteurs)</term>
<term>NADH, NADPH oxidoreductases (composition chimique)</term>
<term>NADP (composition chimique)</term>
<term>Oxadiazoles (composition chimique)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines d'helminthes (antagonistes et inhibiteurs)</term>
<term>Protéines d'helminthes (composition chimique)</term>
<term>Schistosoma japonicum (composition chimique)</term>
<term>Schistosoma japonicum (enzymologie)</term>
<term>Schistosoma mansoni (composition chimique)</term>
<term>Schistosoma mansoni (enzymologie)</term>
<term>Similitude structurale de protéines (MeSH)</term>
<term>Simulation de docking moléculaire (MeSH)</term>
<term>Sites de fixation (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Structure secondaire des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Helminth Proteins</term>
<term>Multienzyme Complexes</term>
<term>NADH, NADPH Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Anthelmintics</term>
<term>Helminth Proteins</term>
<term>Isoxazoles</term>
<term>Multienzyme Complexes</term>
<term>NADH, NADPH Oxidoreductases</term>
<term>NADP</term>
<term>Oxadiazoles</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Complexes multienzymatiques</term>
<term>NADH, NADPH oxidoreductases</term>
<term>Protéines d'helminthes</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Schistosoma japonicum</term>
<term>Schistosoma mansoni</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Anthelminthiques</term>
<term>Complexes multienzymatiques</term>
<term>Isoxazoles</term>
<term>NADH, NADPH oxidoreductases</term>
<term>NADP</term>
<term>Oxadiazoles</term>
<term>Protéines d'helminthes</term>
<term>Schistosoma japonicum</term>
<term>Schistosoma mansoni</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Schistosoma japonicum</term>
<term>Schistosoma mansoni</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Schistosoma japonicum</term>
<term>Schistosoma mansoni</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Binding Sites</term>
<term>Enzyme Inhibitors</term>
<term>Glutathione Disulfide</term>
<term>Molecular Docking Simulation</term>
<term>Molecular Sequence Data</term>
<term>Oxidation-Reduction</term>
<term>Protein Binding</term>
<term>Protein Interaction Domains and Motifs</term>
<term>Protein Structure, Secondary</term>
<term>Species Specificity</term>
<term>Structural Homology, Protein</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Antienzymes</term>
<term>Disulfure de glutathion</term>
<term>Données de séquences moléculaires</term>
<term>Liaison aux protéines</term>
<term>Motifs et domaines d'intéraction protéique</term>
<term>Oxydoréduction</term>
<term>Similitude structurale de protéines</term>
<term>Simulation de docking moléculaire</term>
<term>Sites de fixation</term>
<term>Spécificité d'espèce</term>
<term>Structure secondaire des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Praziquantel (PZQ) is the treatment of choice for schistosomiasis, one of the most important but neglected tropical diseases. Recently, however, Schistosoma have exhibited reduced susceptibility to PZQ, and an urgent need to develop new drugs to treat schistosomiasis has emerged. Thioredoxin glutathione reductase (TGR) plays a crucial role in the redox balance of the parasite, combining glutaredoxin (Grx), glutathione reductase and thioredoxin reductase (TR) activities. Several compounds, including oxadiazole 2‑oxides, phosphinic acid amides, isoxazolones and phosphoramidites, have been identified as agents that inhibit TGR from Schistosoma mansoni (smTGR) and exhibit anti‑schistosomal activity. 4‑Phenyl‑1,2,5‑oxadiazole‑3‑carbonitrile‑2‑oxide has also been shown to be active against TGR from Schistosoma japonicum (sjTGR). The binding sites of these inhibitors, however, remain unclear. To explore the binding interactions of these compounds, we selected six compounds to dock into the NADPH binding site, the active site of the TR domain and the Grx active site of both smTGR and sjTGR using AutoDock 4.2.5.1. The results suggested that the most favoured binding site for all compounds in either sjTGR or smTGR was the oxidised glutathione‑binding pocket of the TR domain. Although all of the compounds could fit into the sjTGR site, the inhibition efficiency of these compounds towards sjTGR was marginally lower than it was towards smTGR, suggesting that it would be necessary to design specific inhibitors of TGR for different Schistosoma species. The docking results showed that all compounds docking in smTGR and sjTGR adopted similar binding modes in the TR domain. Two peptide fragments from another subunit, Phe505'‑Leu508' and Pro572'‑Thr577', played a critical role in the interactions with the inhibitors. In conclusion, the present study has revealed binding mechanisms for potential inhibitors of Schistosoma TGRs and could lead to structure‑based ligand design and the development of new anti-schistosomiasis drugs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26239395</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>06</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1791-3004</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2015</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Molecular medicine reports</Title>
<ISOAbbreviation>Mol Med Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Molecular docking to explore the possible binding mode of potential inhibitors of thioredoxin glutathione reductase.</ArticleTitle>
<Pagination>
<MedlinePgn>5787-95</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3892/mmr.2015.4119</ELocationID>
<Abstract>
<AbstractText>Praziquantel (PZQ) is the treatment of choice for schistosomiasis, one of the most important but neglected tropical diseases. Recently, however, Schistosoma have exhibited reduced susceptibility to PZQ, and an urgent need to develop new drugs to treat schistosomiasis has emerged. Thioredoxin glutathione reductase (TGR) plays a crucial role in the redox balance of the parasite, combining glutaredoxin (Grx), glutathione reductase and thioredoxin reductase (TR) activities. Several compounds, including oxadiazole 2‑oxides, phosphinic acid amides, isoxazolones and phosphoramidites, have been identified as agents that inhibit TGR from Schistosoma mansoni (smTGR) and exhibit anti‑schistosomal activity. 4‑Phenyl‑1,2,5‑oxadiazole‑3‑carbonitrile‑2‑oxide has also been shown to be active against TGR from Schistosoma japonicum (sjTGR). The binding sites of these inhibitors, however, remain unclear. To explore the binding interactions of these compounds, we selected six compounds to dock into the NADPH binding site, the active site of the TR domain and the Grx active site of both smTGR and sjTGR using AutoDock 4.2.5.1. The results suggested that the most favoured binding site for all compounds in either sjTGR or smTGR was the oxidised glutathione‑binding pocket of the TR domain. Although all of the compounds could fit into the sjTGR site, the inhibition efficiency of these compounds towards sjTGR was marginally lower than it was towards smTGR, suggesting that it would be necessary to design specific inhibitors of TGR for different Schistosoma species. The docking results showed that all compounds docking in smTGR and sjTGR adopted similar binding modes in the TR domain. Two peptide fragments from another subunit, Phe505'‑Leu508' and Pro572'‑Thr577', played a critical role in the interactions with the inhibitors. In conclusion, the present study has revealed binding mechanisms for potential inhibitors of Schistosoma TGRs and could lead to structure‑based ligand design and the development of new anti-schistosomiasis drugs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Jingwei</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hua</LastName>
<ForeName>Weijuan</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Jiangsu Second Normal University, Nanjing, Jiangsu 210013, P.R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Jiahuang</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hua</LastName>
<ForeName>Zichun</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R21 AA020304</GrantID>
<Acronym>AA</Acronym>
<Agency>NIAAA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>07</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Greece</Country>
<MedlineTA>Mol Med Rep</MedlineTA>
<NlmUniqueID>101475259</NlmUniqueID>
<ISSNLinking>1791-2997</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000871">Anthelmintics</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004791">Enzyme Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015801">Helminth Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007555">Isoxazoles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009097">Multienzyme Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010069">Oxadiazoles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53-59-8</RegistryNumber>
<NameOfSubstance UI="D009249">NADP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.-</RegistryNumber>
<NameOfSubstance UI="D009247">NADH, NADPH Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.4.-</RegistryNumber>
<NameOfSubstance UI="C466433">thioredoxin glutathione reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>ULW86O013H</RegistryNumber>
<NameOfSubstance UI="D019803">Glutathione Disulfide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000871" MajorTopicYN="N">Anthelmintics</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004791" MajorTopicYN="N">Enzyme Inhibitors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019803" MajorTopicYN="N">Glutathione Disulfide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015801" MajorTopicYN="N">Helminth Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007555" MajorTopicYN="N">Isoxazoles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062105" MajorTopicYN="N">Molecular Docking Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009097" MajorTopicYN="N">Multienzyme Complexes</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009247" MajorTopicYN="N">NADH, NADPH Oxidoreductases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009249" MajorTopicYN="N">NADP</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010069" MajorTopicYN="N">Oxadiazoles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054730" MajorTopicYN="N">Protein Interaction Domains and Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012549" MajorTopicYN="N">Schistosoma japonicum</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012550" MajorTopicYN="N">Schistosoma mansoni</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040681" MajorTopicYN="N">Structural Homology, Protein</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>09</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>06</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26239395</ArticleId>
<ArticleId IdType="doi">10.3892/mmr.2015.4119</ArticleId>
<ArticleId IdType="pmc">PMC4581810</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2010 Oct 15;285(42):32557-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20659890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Negl Trop Dis. 2009 Aug 18;3(8):e504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19688043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2009 Dec;30(16):2785-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19399780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Trop. 2002 May;82(2):139-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12020886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e31456</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22384025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D292-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24153109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Sep 1;19(7):735-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22909029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Negl Trop Dis. 2008;2(11):e337</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19015722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 May 27;36(21):6437-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9174360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Negl Trop Dis. 2008;2(1):e127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18235848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2007 Jun;4(6):e206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17579510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Negl Trop Dis. 2014 Sep;8(9):e3164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25211227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Dec;1810(12):1262-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21782895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2008 Apr;14(4):407-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18345010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 2002 Apr 30;121(1):129-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11985869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Graph Model. 2009 Feb;27(6):665-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19070522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Infect Dis. 2008 Dec;21(6):659-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18978535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2008 Aug 15;72(3):936-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18300227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parasitology. 2010 Nov;137(13):1905-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20810006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Sep 21;372(3):774-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tetrahedron Lett. 2009 Apr;50(15):1710-1713</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19802367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1997 Dec;22(12):488-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9433130</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Huang, Jingwei" sort="Huang, Jingwei" uniqKey="Huang J" first="Jingwei" last="Huang">Jingwei Huang</name>
</noRegion>
<name sortKey="Hua, Weijuan" sort="Hua, Weijuan" uniqKey="Hua W" first="Weijuan" last="Hua">Weijuan Hua</name>
<name sortKey="Hua, Zichun" sort="Hua, Zichun" uniqKey="Hua Z" first="Zichun" last="Hua">Zichun Hua</name>
<name sortKey="Li, Jiahuang" sort="Li, Jiahuang" uniqKey="Li J" first="Jiahuang" last="Li">Jiahuang Li</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000532 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000532 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26239395
   |texte=   Molecular docking to explore the possible binding mode of potential inhibitors of thioredoxin glutathione reductase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26239395" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020